Fibonacci Heaps Revisited
نویسندگان
چکیده
The Fibonacci heap is a classic data structure that supports deletions in logarithmic amortized time and all other heap operations in O(1) amortized time. We explore the design space of this data structure. We propose a version with the following improvements over the original: (i) Each heap is represented by a single heap-ordered tree, instead of a set of trees. (ii) Each decrease-key operation does only one cut and a cascade of rank changes, instead of doing a cascade of cuts. (iii) The outcomes of all comparisons done by the algorithm are explicitly represented in the data structure, so none are wasted. We also give an example to show that without cascading cuts or rank changes, both the original data structure and the new version fail to have the desired efficiency, solving an open problem of Fredman. Finally, we illustrate the richness of the design space by proposing several alternative ways to do cascading rank changes, including a randomized strategy related to one previously proposed by Karger. We leave the analysis of these alternatives as intriguing open problems. ∗Blavatnik School of Computer Science, Tel Aviv University, Israel. Research supported by The Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11). E-mail: [email protected]. †Department of Computer Science, Princeton University, Princeton, NJ 08540 and Microsoft Research Silicon Valley, Mountain View, CA 94043. ‡Blavatnik School of Computer Science, Tel Aviv University, Israel. Research supported by BSF grant no. 2012338 and by The Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11). E-mail: [email protected]. ar X iv :1 40 7. 57 50 v1 [ cs .D S] 2 2 Ju l 2 01 4
منابع مشابه
Pairing Heaps are Sub - optimalbyMichael
Pairing heaps were introduced as a self-adjusting alternative to Fibonacci heaps. They provably enjoy log n amortized costs for the standard heap operations. Although it has not been veri ed that pairing heaps perform the decrease key operation in constant amortized time, this has been conjectured and extensive experimental evidence supports this conjecture. Moreover, pairing heaps have been ob...
متن کاملResolving a Question about Randomized Fibonacci Heaps in the Negative
In this project, we study a randomized variant of Fibonacci heaps where instead of using mark bits, one flips coins in order to determine whether to cascade bringing nodes into the root list. Although it seems intuitive that such heaps should have the same expected performance as standard Fibonacci heaps—and Karger has conjectured as such—the only previous work was an O(log s) upper bound using...
متن کاملRelaxed Fibonacci heaps: An alternative to Fibonacci heaps with worst case rather than amortized time bounds
متن کامل
Improved Upper Bounds for Pairing Heaps
Pairing heaps are shown to have constant amortized time Insert and Meld, thus showing that pairing heaps have the same amortized runtimes as Fibonacci heaps for all operations but Decrease-Key.
متن کاملRelaxed Fibonacci heaps : An alternative to Fibonacci heaps with worst case rather than amortized time bounds ∗ Chandrasekhar
We present a new data structure called relaxed Fibonacci heaps for implementing priority queues on a RAM. Relaxed Fibonacci heaps support the operations find minimum, insert, decrease key and meld, each in O(1) worst case time and delete and delete min in O(log n) worst case time. Introduction The implementation of priority queues is a classical problem in data structures. Priority queues find ...
متن کاملQuake Heaps: A Simple Alternative to Fibonacci Heaps
This note describes a data structure that has the same theoretical performance as Fibonacci heaps, supporting decrease-key operations in O(1) amortized time and delete-min operations in O(log n) amortized time. The data structure is simple to explain and analyze, and may be of pedagogical value.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1407.5750 شماره
صفحات -
تاریخ انتشار 2014